QUEEN'S COLLEGE, CORK.
 HONOR EXAMINATION,
 JUNIOR CLASS, JUNE 1st, 1859

1. Prove that $x^{m} \times x^{n}=x^{m+n}$ for all values of the indices m and n, positive, negative, integral, and fractional.
2. Simplify $\left\{\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}-\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\right\} \div \frac{x^{2}-1}{\sqrt{x^{2}+1}}$.
3. Prove the rule for G C M. Find the G C M of $6 x^{4}-25 x^{2}-9$ and $3 x^{3}-15 x^{2}-5$. Also of $x^{3}+y^{3}+z^{3}-3 x y z$ and $x^{2}+2 x y+y^{2}-z^{2}$.
4. Solve the equations $(x+5)^{\frac{1}{m}}=\left(x^{2}+40 x+16\right)^{\frac{1}{2 m}}$

$$
x^{2}-x+b=\left(x^{2}-x-b^{2}\right)^{\frac{1}{2}}
$$

5. Solve the simultaneous equations-

$$
\begin{aligned}
x+y+z & =6 \\
x-2 y+x & =0 \\
3 x-y+5 z & =16
\end{aligned} \quad \text { and } \quad \begin{array}{ll}
x^{2}+x y+2 y^{2}=74 \\
3 x+3 y^{2}=69
\end{array}
$$

6. Explain the genesis of equations of the higher orders from simple equations. Construct a quadratic whose roots shall be $3+\sqrt{5}$ and $3-\sqrt{5}$; also a cubic whose roots shall be 0,2 , and 3 .
7. Prove that in a geometric progression the product an any two terms equidistant from a given term is always the same. What is the corresponding theorem in arithmetical progression?
8. The first term of an arithmetical series is $2 \frac{1}{2}$, the last $55 \frac{1}{2}$, the number of terms $=100$; find the sum of the series.
9. Extract the cube root of .7854 to three places of decimals.
10. Given two sides of a triangle amd the included angle, deduce formulæ for solving the triangle.
11. Prove the following formulæ of plane trigonometry, viz.:-

$$
\begin{aligned}
\tan \left(180^{\circ}+A\right) & =\tan A \\
\cos \left(180^{\circ}-A\right) & =-\cos A \\
1+\cos (A+B) \cos (A-B) & =\cos ^{2} A+\cos ^{2} B \\
\cot A & =\cot 2 A \pm \sqrt{1+\cot ^{2} 2 A}
\end{aligned}
$$

12. Shew a priori that a formula expressing $\frac{A}{2}$ in terms of $\sin A$ ought to have four values; while one expressing $\tan \frac{A}{2}$ in terms of $\tan A$ ought to have two values.
13. Shew how to find the distance between two inaccessible points1st, when in the horizontal plane; 2ndly, when not in that plane.
14. If a circle roll within another of twice its diameter, any point in the circumference of the former will describe a straight line.
15. Explain Euclid's doctrine of ratio and of proportion; shew that his definition of ratio is imperfect unless accompanied by his definition of proportion. Does Euclid's definition of proportion furnish a direct and immediate test for determining whether four magnitudes are proportional or not?
"MA9959Sum59" - 2015/6/26 - 15:04 — page 2 - \#2

Library Archives, UCC Library

Transcribed and re-typeset by the
Academic and Collaborative Technologies Group in IT Services, UCC

